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Abstract
In their paper Doplicher, Fredenhagen and Roberts (DFR) proposed a simple
model of a particle in quantum spacetime. We give a new formulation of
the model and propose some small changes and additions which improve the
physical interpretation. In particular, we show that the internal degrees of
freedom e and m of the particle represent external forces acting on the particle.
To obtain this result we follow a constructive approach. The model is formulated
as a covariance system. It has projective representations in which not only
the spacetime coordinates but also the conjugated momenta are two-by-two
noncommuting. These momenta are of the form Pµ − (b/c)Aµ, where b is the
charge of the particle. The electric and magnetic fields obtained from the vector
potential Aµ coincide with the variables e and m postulated by DFR. Similarly,
the spacetime position operators are of the form Qµ − (al2/h̄c)�µ, where a is
a generalized charge and l a fundamental length, and with vector potentials �µ

which are in some sense dual w.r.t. the Aµ.

PACS numbers: 0365, 0370, 1110

1. Introduction

The DFR model, introduced in 1994 by Doplicher, Fredenhagen and Roberts [5, 7], describes
a relativistic quantum particle with internal degrees of freedom e and m which behave under
Lorentz transformations as electric and magnetic field vectors respectively. Many authors
have tried to describe the electron in terms of such internal degrees of freedom—see e.g. the
classification of [3]. The DFR model is one of the simplest models of quantum spacetime,
and as such has received a lot of attention in the literature. For example, [9] adopt the basic
assumption of the model that the time–position commutators [Qµ,Qν] commute with all
observables.

In previous work [10, 11] we have reformulated the model as a covariance system. It is
common to study a quantum system starting from a Lie group X of relevant symmetries. In a
covariance system this group is supplemented with an algebra of observables which transform
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into each other under the actions of the symmetry group. We expect that all models of quantum
mechanics and quantum field theory can be described as covariance systems. For example,
standard quantum mechanics of a nonrelativistic particle can be described as a covariance
system consisting of an algebra of functions of position together with the Euclidean group—
see [11].

In this covariance approach it is important to remember that unitary representations of
a symmetry group are allowed to be projective. In particular, for the model under study,
nonvanishing time–position commutators [Q0,Qα] �= 0, α = 1, 2, 3, and nonvanishing
momentum commutators [Pµ, Pν] �= 0 are obtained by considering projective representations
of the group of shifts in spacetime and in momentum space. Indeed, let p and p′ be two shifts
in momentum space, and let U denote the projective representation. Then a phase factor ξ is
allowed in the composition

U(p)U(p′) = ξ(p, p′)U(p + p′). (1)

Now, write ξ in the form

ξ(p, p′) = exp

(
i

2

3∑
µ,ν=0

pµQµ,νp
′
ν

)
(2)

with Q an anti-symmetric matrix. The time–position operators Qµ are the generators of shifts
in momentum space

U(p) = exp

(
− ih̄−1

3∑
µ=0

pµgµ,µQµ

)
(3)

(the metric tensor g is diagonal with eigenvalues 1, −1, −1 and −1). Combination of (3)
and (1) implies the following commutation relations:

[Qµ,Qν] = −ih̄2gµ,µQµ,νgν,ν . (4)

In the DFR model the rhs of the latter expression is an operator which commutes with all other
observables. Hence it is clear that also the phase factor ξ(p, p′) in (1) should be allowed to
be an operator. Unitary representations with operator-valued phase factors have been studied
in [10]. From a physical point of view they are acceptable if they correspond to gauge freedoms
of the model, in other words, if the wavefunctions ψ and ξ(p, p′)ψ describe the same state of
the system. This is obviously the case if ξ(p, p′) commutes with all observables.

Small changes of and additions to the original DFR model are necessary to clarify the
structure of the model. In the present paper we limit ourselves to the description of a single
particle. In [5, 7] also fields are considered. The technicality of the latter makes it hard to
analyse the field version with the same depth as is possible for the single-particle version.
The drawback of the present approach is that we are forced to use the rather uncommon
off-shell formalism of relativistic quantum mechanics. The main result of this paper is the
identification of the internal degrees of freedom e and m as constant external fields. It suggests
that the next item to study, after the one-particle model, is not the field version of the model,
but the interaction of a single particle with varying and fully quantized external fields.

An important difference from DFR is that we consider not only noncommuting spacetime
coordinates but also noncommuting momentum operators. This is a deliberate choice. It is
made possible by considering representations which are also projective for shifts in spacetime,
the generators of which are (proportional to) the momentum operators. The consequences
of making this choice will become clear further on. While considering these projective
representations it turns out to be obvious to allow the metric tensor g to depend on the internal
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degrees of freedom e and m. We use the notation γ (e,m) for this e,m-dependent metric tensor
while g always denotes the metric tensor [1,−1,−1,−1] of Minkowski space.

Another modification to the model is the interchange of the two internal degrees of freedom
e and m (corrected by a factor e · m to restore time reversal symmetry). This intervention is
needed to allow for the interpretation of the internal degrees of freedom e and m as (analogues
of) electric and magnetic fields. Finally, the latter interpretation suggests the introduction of a
coupling constant λ and of charges a and b.

2. The model

The internal degrees of freedom consist of two vectors e and m in R3 satisfying |e| = |m| and
e · m = ±1. These e,m-pairs are the points of the internal configuration space �. It consists
of two subspaces �+ and �− corresponding with the two possible signs of the scalar product
e · m. The DFR model [5, 7] give an extensive justification of this model. For our purposes
it is important that under Lorentz transformations points of � transform into themselves.
These transformations are defined as follows. Given a point e,m in � introduce the following
anti-symmetric matrix:

ε(e,m) =




0 e1 e2 e3

−e1 0 m3 −m2

−e2 −m3 0 m1

−e3 m2 −m1 0


 . (5)

Let � be a Lorentz transformation. The transformation of ε(e,m) using � is denoted ε(e′,m′)

ε(e′,m′) = �−1ε(e,m)�̃−1. (6)

It is again an anti-symmetric matrix. It is not difficult to show that e′,m′ is again a point of �.
Hence, the Lorentz transformation � maps the point e,m into the point e′,m′. Note that (6)
differs from the conventions used in [11]. These differences are necessary because of the swap
of meaning of e and m.

In the DFR paper the variables e and m are by definition the entries of the four-by-four
anti-symmetric matrix appearing in the commutation relations

[Qµ,Qν] = il2
PQµ,ν (7)

(lP is Planck’s length). In our notations this means that Q = ε(e,m). Our actual result gives
Q proportional to ε−1(e,m). Note that the inverse of the matrix ε(e,m) is given by

ε−1(e,m) = −(e · m)ε(m, e) (8)

so that again the differences are explained by the interchange of e and m.
In what follows we need to integrate over � in a covariant way. This integration is defined

by ∫
�

de dmf (e,m) =
∫

R6
de dmδ((e · m)2 − 1)δ(|e|2 − |m|2)f (e,m). (9)

It is straightforward to show that the transformation of R6, defined by (6), has determinant
±1. As a consequence the integration in the rhs of (9) is invariant under proper Lorentz
transformations.
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3. A fundamental length

Many authors have proposed that at very short distances the coordinates of spacetime should
be discrete, or that at least Heisenberg-type uncertainty relations should hold for time and
position operators. The argument is that at the scale of Planck’s length

lP =
√
Gh̄c−3 (10)

the quantum nature of gravitational forces is important and changes the structure of spacetime.
Once one accepts the relevance of the fundamental unit of length lP all distances can be
expressed as dimensionless numbers. In particular, one can convert inverse lengths to lengths.
Using Planck’s constant h̄ one can then convert momenta into lengths. In what follows we will
use this idea of an absolute length l to convert shifts in position q into shifts in wavevector k

by means of the relation k = l−2q. However, this formula does not behave correctly under
time reversal. In the present model we can correct for this by multiplying by the scalar product
e · m, which changes sign under time reversal, i.e. (e · m)l−2q behaves as a wavevector (it
transforms as a pseudo-vector).

As early as 1949 Born [1] suggested that, in analogy with the rest mass squared given by

c−2
3∑

µ,ν=0

gµ,νpµpν (11)

also the pseudo-distance

d(q, q ′) =
3∑

µ,ν=0

gµ,ν(q − q ′)µ(q − q ′)ν (12)

could have a discrete spectrum. He proposed to introduce a new pseudo-metric, which in our
notations reads∑

µ,ν

gµ,ν(qµqν + l4kµkν). (13)

The group of symmetries leaving this pseudo-metric invariant is larger than the Poincaré group.
By requiring covariance for this larger group extra constraints are added to the theory. (See [8].)
It is straightforward to see that our analysis of the DFR model can be extended to include this
larger group. However, in this paper we restrict ourselves to the requirement of Poincaré
invariance. Because the model contains a fixed length there is no way to extend the Poincaré
group with dilatations to obtain the Weyl group.

4. Correlation function approach

The commutation relations (7) are the basis of the DFR paper. Here, the starting point is a
correlation function denoted F(f ; k, q; k′, q ′), with f (e,m) any function of e and m, and with
k, k′, q and q ′ four-vectors (k has the meaning of a shift in the space of wavevectors, and q of
a shift in spacetime). Later on we construct a Hilbert space representation which is such that

F(f ; k, q; k′, q ′) = 〈ψ |U(k′, q ′)f̂ U(k, q)†|ψ〉 (14)

holds. In this expression ψ is a wavefunction, U(k, q) is a projective unitary representation
of the additive group R4 × R4 of shifts in spacetime and in wavevector space, and f̂ is the
quantization of the function f (e,m).

The technique of constructing quantum systems starting not from commutation relations
but from correlation functions has been developed recently in a mathematical paper [11]. It is
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a generalization of the C∗-algebraic approach, which requires an algebraic structure together
with correlation functions determining the state of the system. In the new approach, the C∗-
algebra is replaced by a group of symmetries X acting on ‘classical’ functions, e.g. functions
of the position of the particle, or, as we do here, functions f (e,m) of the internal degrees of
freedom e and m. One of the advantages of the formalism is the room it leaves for projective
representations of X. This point is crucial for the present paper.

We need an explicit expression of F(f ; k, q; k′, q ′) in closed form. Typically, this kind
of correlation function, which can be expressed in closed form, describes coherent states and
has a Gaussian form. Our ansatz is

F(f ; k, q; k′, q ′) =
∫
�

de dmw(e,m)f (e,m)ξ(k, q; k′, q ′; e,m)

× exp

(
− 1

2λ
s(k, q; k′, q ′; e,m)

)
. (15)

This expression has been obtained by elaborating the simpler versions found in [10, 11]. In
this expression w(e,m) is a density function, i.e. w(e,m) is positive and normalized∫

�

de dmw(e,m) = 1 (16)

ξ(k, q; k′, q ′; e,m) is a complex phase factor, λ is a coupling constant discussed later on and
s(k, q; k′, q ′; e,m) is a real function, bilinear in k, q and k′, q ′. In order to be a correlation
function (15) should satisfy conditions of positivity, normalization, covariance and continuity
(see [11]). The explicit choice of ξ(k, q; k′, q ′; e,m) and s(k, q; k′, q ′; e,m), made below,
satisfies these requirements.

The phase factor ξ(k, q; k′, q ′; e,m) is written in the following way:

ξ(k, q; k′, q ′; e,m) = exp

(
i

2λ
(e · m)uε−1(e,m)u′

)
(17)

where

u = lk + λl−1η(e,m)q and u′ = lk′ + λl−1η(e,m)q ′.

It involves the four-by-four matrix η given by

η(e,m) = (e · m) ε(e,m)γ−1(e,m). (18)

Its function is to transform positions into wavevectors. As discussed before, the factor (e · m)

is necessary because wavevectors are pseudovectors changing sign under time reversal. The
choice of η has to be made in such a way that

η(e′,m′) = �−1η(e,m)� (19)

holds for any proper Lorentz transformation �, when e′,m′ are related to e,m via (6). This
condition is satisfied if the matrix γ (e,m) transforms like ε, i.e.

γ (e′,m′) = �−1γ (e,m)�̃−1 (20)

should hold. Note that γ (e,m) = g satisfies the latter condition. Throughout this paper one
can substitute γ (e,m) by g. Note that we assume in the following that γ (e,m) is a symmetric
matrix.

The function s(k, q; k′, q ′; e,m) is given by

s(k, q; k′, q ′; e,m) = (u − u′)T (e,m)(u − u′) (21)

withu andu′ as in (17). It involves a symmetric four-by-four matrixTµ,ν(e,m), whose elements
may depend on e and m. At first sight the expression exp

(−(1/2λ)s(k, q; k′, q ′; e,m)
)

does
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not appear Lorentz covariant. It is indeed necessary to make a special ’covariant’ choice of the
matrix Tµ,ν(e,m). The requirement of covariance turns out to be that it should transform in
the same way as ε(e,m). This means that, if the Lorentz transformation � transforms ε(e,m)

into ε(e′,m′), then also

T (e′,m′) = �−1T (e,m)�̃−1 (22)

holds. Assume for example that T (e,m) = (1/2)I (half the identity matrix) whenever the
length of e and m is equal to unity. Next define T (e,m) for arbitrary e and m by T (e,m) =
(1/2)�−1�̃−1, where � is any Lorentz boost for which ε(e,m) = �−1ε(e0,m0)�̃

−1 with e0

and m0 vectors of unit length.

5. Hilbert space representation

The correlation function (15) can be used to define a scalar product for wavefunctions of the
form ψ(k, q, e,m) by the formula

〈ψ |φ〉 =
∫
�

de dm
∫

R4
dk

∫
R4

dq
∫

R4
dk′

∫
R4

dq ′

×φ(k, q, e,m)ψ(k′, q ′, e,m)ξ(k, q; k′, q ′; e,m)

× exp

(
− 1

2λ
s(k, q; k′, q ′; e,m)

)
. (23)

This scalar product defines the Hilbert space of wavefunctions. We cannot use the more
common representation involving square integrable wavefunctions. Therefore one should be
careful with the traditional interpretation of |ψ(k, q, e,m)|2 as a probability density.

In this Hilbert space exists a unitary representation of shifts in k- and q-space. It is given
by

U(k, q)ψ(k′, q ′, e,m) = ψ(k + k′, q + q ′, e,m)ξ(k′, q ′; k, q; e,m). (24)

The representation is projective. Indeed, one verifies immediately, using (24), that

U(k, q)U(k′, q ′) = ξ̂ (k, q; k′, q ′)U(k + k′, q + q ′). (25)

We use a ˆ to denote multiplication operators. So, if f is a function of k, q, e,m then f̂ is the
operator which multiplies ψ(k, q, e,m) with f (k, q, e,m). In particular, ξ̂ (k′, q ′; k′′, q ′′) is
the operator which multiplies ψ(k, q, e,m) with ξ(k′, q ′; k′′, q ′′; e,m).

The correlation functions F(f ; k, q; k′, q ′) follow from equations (14) and (23) if the
wavefunction ψ is taken as

ψ(k, q, e,m) = δ(k)δ(q)
√
w(e,m) (26)

with δ(k) and δ(q)Dirac’s delta function. Remember that the wavefunctions are not necessarily
square integrable functions, so the choice (26) is acceptable. On the other hand, the
interpretation of |ψ(k, q, e,m)|2 as a probability density of finding the quantum particle in the
state k, q, e,m is not correct. This will be clear from the explicit expression for position and
momentum operators as given in the next section.

6. Position and momentum operators

The position and momentum operators Qµ and Pµ = h̄Kµ are by definition the generators of
the group of shifts in wavevector space and spacetime respectively. Let us fix conventions in
such a way that

U(k, q) = exp(−ikγ̂−1Q + iγ̂−1qK) (27)
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holds. A quick calculation using (24) gives then a result which can be written as

Qµ =
3∑

ν=0

γ̂µ,ν i
∂

∂kν
+

1

2
q̂µ − al2

h̄c
�̂µ

Kµ = −
3∑

ν=0

γ̂µ,νi
∂

∂qν

+
1

2
k̂µ − b

h̄c
σ3Âµ

(28)

with σ3 the operator which multiplies the wavefunction ψ(k, q, e,m) by e · m, with a and b

‘charges’ of the particle, with �µ given by

�µ(k, e,m) = − h̄c

2λa

3∑
ν=0

η−1
µ,ν(e,m)kν (29)

and with Aµ given by

Aµ(q, e,m) = −(e · m)
λh̄c

2bl2

3∑
ν=0

ηµ,ν(e,m)qν. (30)

The quantities Aµ(q, e,m) form a vector potential. They satisfy the rather unusual
condition∑
µ,ν

γ−1
µ,ν(e,m)qµAν(q, e,m) = −λ

b

h̄c

2l2
γ−1(e,m)qε(e,m)γ−1(e,m)q = 0. (31)

Introduce the notations

Eα =
∑
ν

γ0,ν(e,m)
∂Aα

∂qν

−
∑
ν

γα,ν(e,m)
∂A0

∂qν

α = 1, 2, 3 (32)

and

Bα = −
3∑

ν=0

3∑
β,ζ=1

εα,β,ζ γζ,ν(e,m)
∂Aβ

∂qν

α = 1, 2, 3 (33)

with εα,β,ζ the fundamental anti-symmetric tensor of dimension three. One calculates

Eα = −(e · m)
λ

b

h̄c

2l2

( ∑
ν

γ0,νηα,ν −
∑
ν

γα,νη0,ν

)

= λ

b

h̄c

l2
eα (34)

and

Bα = (e · m)
λ

b

h̄c

2l2

3∑
ν=0

∑
β,ζ

εα,β,ζ γζ,νηβ,ν

= λ

b

h̄c

l2
mα. (35)

Assume now that λ is the fine-structure constant of electromagnetism and that b is the charge
of the proton. They are related by

b2 = λh̄c. (36)

Then the equations (34) and (35) become

Eα = b

l2
eα

Bα = b

l2
mα.

(37)
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Note that b/l2 is the strength of the electric field of the proton at distance l. One concludes
that eα and mα can be interpreted as a magnetic and an electric field respectively, measured in
absolute units, which relate to the elementary charge b and the intrinsic length l.

In analogy with (31), the �µ(k, e,m) satisfy the condition∑
µ

γ−1
µ,ν(e,m)kµ�ν(k, e,m) = − h̄c

2λa

∑
µ,ν,ζ

γ−1
µ,ν(e,m)kµη

−1(e,m)ν,ζ kζ

= − h̄c

2λa
(e · m)kε−1(e,m)k = 0. (38)

The fields Eα and Bα can be obtained from �µ(k, e,m) by

Eα = λa

l2b

3∑
β,ζ=1

3∑
ν=0

εα,β,ζ γ
−1
ζ,ν (e,m)

∂�ν

∂kβ

Bα = λa

l2b

[
3∑

ν=0

γ−1
0,ν (e,m)

∂�ν

∂kα
−

3∑
ν=0

γ−1
α,ν (e,m)

∂�ν

∂k0

] (39)

(α = 1, 2, 3). The symmetry between these relations and (32) and (33) can be understood
because the matrices ∂�µ

∂kν
and ∂Aµ

∂qν
are each other’s inverses (up to a constant factor). Indeed,

one has
3∑

ν=0

∂Aµ

∂qν

∂�ν

∂kσ
= (e · m)

h̄2c2

4abl2
δµ,σ (40)

with δµ,σ Kronecker’s delta.

7. Commutation relations

From (28) one obtains the following commutation relations:

[
Qµ,Qν

] = −al2

h̄c

3∑
σ=0

[
i
∂

∂kσ
, γ̂µ,σ �̂ν − γ̂ν,σ �̂µ

]

= i
l2

2λ

3∑
σ=0

(
γ̂µ,σ η̂

−1
ν,σ − γ̂ν,σ η̂

−1
µ,σ

)

= −i
l2

λ
σ3(γ̂ ε̂−1γ̂ )µ,ν (41)

[
Kµ,Kν

] = λ

h̄c
σ3

3∑
σ=0

[
i
∂

∂qσ

, γ̂µ,σ Âν − γ̂ν,σ Âµ

]

= −i
λ

2l2

3∑
σ=0

(
γ̂µ,σ η̂ν,σ − γ̂ν,σ η̂µ,σ

)

= i
λ

l2
σ3ε̂µ,ν (42)

and [
Kµ,Qν

] = −iγ̂µ,ν . (43)

As explained before, the main difference between (41) and (7) arises from the interchange of
e and m. Further differences are the appearance in (41) of the inverse of the coupling constant
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λ and of the generalized metric tensor γ (e,m). If γ (e,m) ≡ g then the only effect is a
change of sign for the commutator between the time operator and the position operators. The
appearance of factors γ (e,m) in (41) and (43) is a consequence of including γ−1(e,m) in the
definition (24) of the generators Kµ and Qµ.

Many authors, e.g. [4, 6], have studied noncanonical commutation relations comparable
with (41)–(43)—see for example the references cited in [5, 7]. A review of these works is
outside the scope of this paper.

Note that, if one takes �̂µ and Âµ equal to zero in (28), then one obtains a representation
describing a particle of mass zero in the off-shell formalism of relativistic quantum mechanics.
The noncanonical commutation relations, which we have here, are a consequence of the
presence in (28) of terms containing �̂µ and Âµ respectively. Now, the procedure of replacing
momenta Pµ by new momenta Pµ − (b/c)Aµ is well known from electrodynamics. Note
that the components of the new momenta Pµ − (b/c)Aµ do not necessarily commute between
themselves (this fact is well known, and was used e.g. in [4] as an argument to introduce
noncommuting position operators). Hence noncommuting momenta are quite common in
quantum electrodynamics. In the present model there is not only a substitution of Pµ by
Pµ − σ3(b/c)Âµ but also a substitution of Qµ by Qµ − (al2/h̄c)�̂µ. The latter is responsible
for the nonvanishing time–position commutators.

Because we assume that a fixed length exists in the model, we can add positions and
wavevectors, as in (17). A similar combination can be made on the level of operators. Introduce
operators Xµ and Yµ by

Xµ = lKµ + λl−1
∑
ν

ηµ,νQν

Yµ = lKµ − λl−1
∑
ν

ηµ,νQν.
(44)

The Xµ satisfy essentially the same commutation relations as the Kµ[
Xµ,Xν

] = 4iλσ3ε̂µ,ν (45)

while the Yµ commute between themselves and with the Xµ[
Yµ, Yν

] = 0 and
[
Yµ,Xν

] = 0. (46)

The substitution of momenta and position operators by operators with subtracted vector
potentials, as discussed in the previous paragraph, translate into a substitution of Xµ by
Xµ + (1/2)uµ, with uµ as in (17). Hence, the origin of noncanonical commutation relations in
the present model is a constant external field which couples with the generatorsXµ. Because the
latter are a linear combination of position and momentum operators both pick up noncommuting
terms. The Yµ are not influenced by the external field and commute with the shifts in position
or momentum space. However, they do not commute with Lorentz transformations (see the
next section). It is therefore clear that the Yµ describe internal degrees of freedom of the
particle. On the sub-Hilbert space Hext of wavefunctions which depend only on u, e and m,
the position and momentum operators can be written as

l−1Qµ

∣∣
Hext

=
3∑

ν=0

γ̂µ,ν i
∂

∂uν

+
1

2λ

3∑
ν=0

η̂−1
µ,νûν

lKµ

∣∣
Hext

= λσ3

3∑
ν=0

ε̂µ,νi
∂

∂uν

+
1

2
ûµ

(47)
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so that

Xµ

∣∣
Hext

= 2λσ3

3∑
ν=0

ε̂µ,ν i
∂

∂uν

+ ûµ

Yµ

∣∣
Hext

= 0.

(48)

Hence in this subspace position and momentum operators coincide.

8. Poincaré invariance

Shifts of the particle in spacetime are described by the unitary operators U(0, q). Indeed, one
verifies that

U(0, q)QµU(0, q)† = Qµ + qµ. (49)

On the other hand

U(0, q)KµU(0, q)† = Kµ +
λ

l2

∑
ν

η̂µ,νqν. (50)

Clearly, the operators Kµ are not conserved under shifts in spacetime. This is understandable
because the particle moves in external fields.

Similarly, shifts in the space of wavevectors are described by the unitary operatorsU(k, 0).
Indeed, one has

U(k, 0)KµU(k, 0)† = Kµ + kµ. (51)

Next we define a unitary representation R of the proper Lorentz group. The ansatz is

R(�)ψ(k, q, e,m) = ψ(�−1k,�−1q, e′,m′) (52)

with e′,m′ related to e,m by (6). The conjugate operator R(�)† is given by

R(�)†ψ(k, q, e′,m′) = ψ(�k,�q, e,m). (53)

It is now straightforward to verify that R(�) is a unitary representation of the proper Lorentz
group.

We cannot use (52) for the whole of the Lorentz group because time reversal must be
implemented as an anti-unitary operator [2]. Indeed, under time reversal qµ goes into −gµ,µqµ

while kµ goes into gµ,µkµ. The operator 8 given by

8ψ(k, q, e,m) = ψ(gk,−gq,−e,m) (54)

satisfies all requirements. It obviously satisfies 82 = I and one verifies that

(8φ,ψ) = (8ψ, φ). (55)

Finally, the parity operator P is defined as an isometry between Hilbert spaces by

Pψ(k, q, e,m) = ψ(gk, gq,−e,m). (56)

The parity-inverted scalar product is given by

〈ψ |φ〉′ =
∫
�

de dm
∫

R4
dk

∫
R4

dq
∫

R4
dk′

∫
R4

dq ′

×φ(k, q, e,m)ψ(k′, q ′, e,m)ξ(gk, gq; gk′, gq ′; −e,m)

× exp

(
− 1

2λ
s(gk, gq; gk′, gq ′; −e,m)

)
. (57)

It satisfies

〈Pψ |Pφ〉′ = 〈ψ |φ〉. (58)
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9. Invariants

The position and wavevector operators Qµ and Kµ transform as expected under proper Lorentz
transformations. From (52), (53) and the definitions (28) one obtains

R(�)QµR(�)† =
∑
ν

�−1
µ,νQν

R(�)KµR(�)† =
∑
ν

�−1
µ,νKν.

(59)

Note that also

R(�)γ̂µ,νR(�)† = (�−1γ̂ �̃−1)µ,ν . (60)

Introduce the squared mass operator M2 by

c2h̄−2M2 =
∑
µ,ν

γ̂−1
µ,νKµKν. (61)

Then one has obviously

R(�)M2R(�)† = M2. (62)

Note that M2 is not necessarily invariant under shifts in spacetime.
Similarly, the squared eigentime operator∑

µ,ν

γ̂−1
µ,νQµQν (63)

is also invariant under proper Lorentz transformations.

10. Gauge transformations

Consider the gauge transformation

Aµ → A′
µ = Aµ +

∑
ν

γµ,ν

∂χ

∂qν

�µ → �′
µ = �µ − (e · m)

2b2

h̄l2

∑
ν

γµ,ν

∂χ

∂kν

(64)

with χ an arbitrary function of k, q, e,m. Under this transformation Eα and Bα , as given
by (32) and (33), are invariant. Also the commutation relations (41)–(43) are invariant. Now
let

U ′(k, q) = exp(−ikγ̂−1Q′ + iγ̂−1qK ′) (65)

with Q′
µ and K ′

µ derived from (28) by substituting Aµ by A′
µ. Then U ′ is again a projective

representation of the covariance system. It involves the same operator-valued phase factor
ξ(k, q; k′, q ′) because the latter depends only on the commutation relations (41)–(43).

Fix a positive number κ , which is the rest mass of the particle multiplied by c/h̄. Assume
that ψ(k, q, e,m) is a solution of the eigenvalue problem

(c/h̄)2M2ψ = κ2ψ (66)

(we do not assume that ψ is a wavefunction belonging to the Hilbert space with scalar
product (23)). Then the function ψ ′(k, q, e,m) given by

ψ ′(k, q, e,m) = exp

(
i
b

h̄c
(e · m)χ(k, q, e,m)

)
ψ(k, q, e,m) (67)
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is a solution of the eigenvalue problem

(c/h̄)2(M ′)2ψ ′ = κ2ψ ′. (68)

This property is what one understands by gauge invariance of the model. In order to check
that (68) holds let us calculate

(h̄/c)2κ2ψ ′ = exp

(
i
b

h̄c
σ3χ̂

)
(h̄/c)2κ2ψ

= exp

(
i
b

h̄c
σ3χ̂

)
M2ψ

= exp

(
i
b

h̄c
σ3χ̂

)
M2 exp

(
−i

b

h̄c
σ3χ̂

)
ψ ′. (69)

Now use that

Kν exp

(
−i

b

h̄c
σ3χ̂

)
= exp

(
−i

b

h̄c
σ3χ̂

)
K ′

ν (70)

to obtain

M2 exp

(
−i

b

h̄c
σ3χ̂

)
= exp

(
−i

b

h̄c
σ3χ̂

)
M ′2 (71)

so that (68) follows.

11. Discussion

We have shown in this paper that the variables e and m appearing in the DFR model can be
explained as constant external fields. We have swapped the role of e andm so that e is an electric
and m is a magnetic field vector. As a side effect we have also shown that the nonvanishing
time–position commutators of the model arise by substituting the spacetime position operators
Qµ by Qµ − (al2/h̄c)�µ, together with the well known substitution of momentum operators
Pµ by Pµ − (b/c)Aµ. The vector potentials �µ and Aµ are strictly linked because the field
tensors ∂�µ

∂kν
and ∂Aµ

∂qν
are each other’s inverses, up to a constant factor. Obviously, these findings

are of interest in a more general context than that of this particular model. In the present model
the k- and q-dependence of �µ and Aµ respectively is trivial. In a more general context, we
expect more complex dependence on k and q. In particular, nontrivial spacetime dependence
of Aµ will lead to spacetime dependence of �µ.

Projective representations with operator-valued phase factors play an important role in this
paper. A more systematic study of this kind of representation is required. Also other aspects
of the model require further investigation. In particular, we can make the following remarks.

• Throughout the paper the metric tensor g has been replaced by an operator γ̂ because the
mathematics allows us to do so. It is not clear what such an operator-valued metric tensor
means.

• We did not consider spin of the particle. The particle/anti-particle structure of the model
will be discussed in a subsequent paper.

• The covariant representation studied in this paper is reducible. Reducibility of the
representation restricted to the sub-Hilbert space of wavefunctions depending on u, e

and m (see the end of section 7) has not been investigated.
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